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Background: Transient �1AR activation remains at odds with long lasting cellular and physiological responses.
Results: The agonist-occupied �1AR continuously signals to adenylyl cyclase (AC) to produce cAMP in both cardiac myocytes
and neurons for more than 8 h, which is masked by receptor-associated PDE4D8.
Conclusion: Stimulation of �1AR induces long-lasting cAMP production in the heart for ligand-induced physiological
responses.
Significance: We show a novel mechanism to understand persistent �1AR signaling in the heart.

Small-molecule, ligand-activated G protein-coupled recep-
tors are generally thought to be rapidly desensitized within a
period of minutes through receptor phosphorylation and inter-
nalization after repeated or prolonged stimulation. This tran-
sient G protein-coupled receptor activation remains at odds
with many observed long-lasting cellular and physiological
responses. Here, using live cell imaging of cAMP with a FRET-
based biosensor and myocyte contraction assay, we show that
the catecholamine-activated �1 adrenergic receptor (�1AR)
continuously stimulates second messenger cAMP synthesis in
primary cardiac myocytes and neurons, which lasts for more
than 8 h (a decay t1⁄2 of 3.9 h) in cardiac myocytes. However, the
�1AR-induced cAMP signal is counterbalanced and masked by
the receptor-bound phosphodiesterase (PDE) 4D8-dependent
cAMP hydrolysis. Inhibition of PDE4 activity recovers the
receptor-induced cAMP signal and promotes contractile
response in mouse hearts during extended periods of agonist
stimulation. �1AR associates with PDE4D8 through the recep-
tor C-terminal PDZ motif-dependent binding to synaptic-asso-
ciated protein 97 (SAP97). Knockdown of SAP97 or mutation
of the �1AR PDZ motif disrupts the complex and promotes
sustained agonist-induced cAMP activity, PKA phosphoryla-
tion, and cardiac myocyte contraction response. Together,
these findings unveil a long lasting adrenergic signal in neu-
rons and myocytes under prolonged stimulation and an
underappreciated role of PDE that is essential in classic
receptor signaling desensitization and in maintaining a long
lasting cAMP equilibrium for ligand-induced physiological
response.

Activation of G protein-coupled receptors (GPCRs)4 regu-
lates a broad range of cellular responses. Following agonist
binding, GPCRs couple to G protein to stimulate downstream
effectors such as adenylyl cyclase (AC) and phospholipase to
produce second messenger cAMP, diacylglycerol, and inositol
1,4,5-trisphosphate for diversified cellular responses (1– 4).
Many GPCRs are also desensitized through rapid phosphory-
lation by G protein-coupled receptor kinases within a period of
less than 1 min. Subsequently, the phosphorylated GPCRs bind
to �-arrestins (5) for endocytosis to further turn off receptor
activation by repetitive stimulation or excessive agonists. After
internalization, GPCRs are either dephosphorylated for recy-
cling back to the cell surface or delivered to lysosomes for deg-
radation (6). Interestingly, recent studies reveal that GPCRs
activated by hormonal peptides such as relaxin and thyroid-
stimulating hormone can promote a persistent cAMP signal at
the cell surface and after internalization, respectively (7–9).
This persistent signal is attributed to high-affinity binding of
peptide agonists to their respective receptors. In contrast, the
duration of GPCR activation by small-molecule ligands such as
catecholamines is still generally considered to be transient
(1– 4).

Adrenoceptors (ARs) are activated by small-molecule cat-
echolamines. Activation of �ARs promotes cAMP-PKA activ-
ity for diversified physiological processes, from cardiac con-
traction and energy metabolism in the peripheral systems to
learning and memory in the central nervous system (1, 10).
Despite a transient feature of �AR signal in traditional bio-
chemical studies in fibroblast cell lines (1– 4), physiological
responses induced by �AR activation suggest a persistent
receptor signal in native tissues. Activation of cardiac �ARs via
the sympathetic nervous system promotes persistent contract-
ile response in the heart during long periods of exercise, and
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stimulation of �ARs in neurons promotes long term potentia-
tion that is critical for learning and memory. In agreement with
these functional outputs, �1ARs undergo minimal internaliza-
tion in primary cardiac myocytes after agonist stimulation (11).
Meanwhile, a recent study indicates that �2AR is capable of
maintaining ligand-induced active conformation after internal-
ization and/or recycling (12). Together, these observations
raise possibilities that small-molecule, ligand-activated �ARs
are capable of inducing a persistent signal in a physiological
cellular context.

Here we provide evidence showing that activation of �1AR is
able to continuously signal for more than 8 h in primary cardiac
myocytes. We further reveal that scaffold protein SAP97 con-
nects �1AR to the PDE4D8 isoform via the receptor C-terminal
PDZ motif. PDE4D8-mediated cAMP hydrolysis shapes the
persistent �1AR signal for catecholamine-induced contractile
responses in animal hearts.

MATERIALS AND METHODS

Langendorff Perfusion Heart Preparation—Animal experi-
ments were performed following the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. All
procedures were approved by the Institutional Animal Care
and Use Committee at the University of California at Davis. The
isolated heart perfusion technique has been described previ-
ously (13). Hearts were excised from mice under anesthesia
(sodium pentobarbital, 120 mg/kg body weight, intraperitone-
ally) and transferred rapidly to the Langendorff apparatus.
After the heart was hung, it was perfused under constant pres-
sure (80 mm Hg) with a solution containing 113.8 mM NaCl, 22
mM NaHCO3, 4.7 mM KCl, 1.2 mM KH2PO4, 1.1 mM MgSO4, 1.1
mM glucose, 2 mM CaCl2, and 2 mM sodium pyruvate. A balloon
made of plastic film was inserted into the left ventricular (LV)
cavity and filled with water to set the diastolic pressure at 10
mm Hg of LV end-diastolic pressure. The balloon was con-
nected to a Millar blood pressure system (Millar Instruments),
and the pressure was measured with a pressure catheter (SPR-
671, Millar Instruments) connected to an ADInstruments
PowerLab 16/30 with LabChart Pro-6.0 (ADInstruments). All
hearts were immersed in a water-jacketed organ chamber to
maintain a temperature of 37 °C. The heart rate was maintained
at 480 beats/min by pacing at the right ventricle with a Grass
SD9 stimulator. The hearts became stabilized after pacing for
15 min. Drugs were applied through the perfusion solution. LV
pressure, LV end-diastolic pressure, and the maximum rate of
positive and negative change in LV pressure (�LV dp/dt) were
recorded. Left ventricular developed pressure was calculated by
subtracting the LV end-diastolic pressure from the LV systolic
pressure. Data were analyzed offline with LabChart Pro-6.0.

Hemodynamic Study—Hemodynamic measurement was
carried out with a pressure catheter (SPR-839, Millar Instru-
ments) connected to an AD Instruments Power-Lab 4/30
(MPVS-300, ADInstruments) with Lab Chart Pro 6.0 software.
In brief, mice were anesthetized with intraperitoneal injection
of ketamine/xylazine (80 and 5 mg/kg, respectively). A midline
neck incision was made, the carotid artery was separated from
the vagus nerve, and a pressure catheter was inserted via the
carotid artery tip into the left ventricle. After stabilization of the

signal for 5–10 min, the baseline pressure was recorded, fol-
lowed by intraperitoneal administration of isoproterenol (0.2
mg/kg) and rolipram (3 mg/kg), as indicated. Intra-LV blood
pressure was recorded continuously to monitor the effects of
the injected drugs. Data were analyzed offline with the blood
pressure module in the LabChart 6.0 software.

Cardiac Myocyte and Prefrontal Cortical Neuron Isolation
and Adenovirus Infection—Neonatal cardiac myocytes and pre-
frontal cortical neurons were isolated from newborn pups lack-
ing the �2AR gene (�2AR-KO), the �1AR gene (�1AR-KO), or
lacking both the �1 and �2AR genes (�1�2AR-KO), as described
previously (13, 14). Cells were cultured in coverslip chambers
precoated with laminin for live cell imaging. After isolation and
plating for 24 h, cells were washed and infected with adenovi-
ruses for expression of the cytosolic cAMP sensor (ICUE3) (15)
and PDE4D isoforms. The C-terminal tagged PDE4D isoforms
containing the N-terminal regions were subcloned into the
pEGFP-N2 plasmid with HindIII and EcoRI. The fusion protein
was then shuttled with HindIII and XbaI into the viral vector for
recombinant viruses. Wild-type, full-length PDE4D8 and the
mutants PDE4D8-D498A and PDE4D9-D490A lacking enzy-
matic activity were subcloned into pcDNA3.1-mcherry with
HindIII-EcoRI, and the fusion protein was shuttled with
HindIII and XbaI into the viral vector for recombinant viruses.
Adenovirus-expressing HA-tagged �1AR has been described
elsewhere (11).

Neonatal Myocyte Contraction Rate Assay—Measurement of
spontaneous contraction rate was carried out as described pre-
viously (16). Changes in the neonatal myocyte beating rate after
drug treatments were analyzed by Metamorph software
(Molecular Devices).

Immunoprecipitation and Western Blot Analysis—�1AR-KO
myocytes expressing PDE4D isoforms, HA-tagged �1AR, or
both were stimulated with 1 nM of isoproterenol before being
lysed in immunoprecipitation (IP) buffer. Alternatively, wild-
type mouse hearts were lysed in IP buffer. The lysates were
clarified by centrifugation before they were subjected to West-
ern blot analysis or immunoprecipitation with anti-HA affinity
resins (Roche) or anti-�1AR antibody (SCBT). For time courses
of PKA phosphorylation of PLB, �1AR-KO myocytes express-
ing HA-tagged �1AR were stimulated with 1 nM isoproterenol
for the indicated times before washing out the drug. For the
PKA phosphorylation of PDE4, wild-type myocytes were stim-
ulated with 1 nM or 1 �M isoproterenol for 10 min before being
lysed in the buffer. The lysates were clarified by centrifugation
before being subjected to Western blot analysis. The cell lysates
and immunoprecipitated proteins were resolved in SDS-PAGE
for Western blot analysis with anti-�1AR antibody (SCBT),
total and phosphorylated PLB at serine 16 and threonine 17
(Badrilla), anti-phospho-PDE4D antibody (Fabgennix), anti-
red fluorescence protein/mCherry antibody (Rockland), and
anti-green fluorescence protein antibody (Invitrogen). The pri-
mary antibodies were revealed with fluorescent-conjugated
secondary antibodies using a Licor scanner (Licor).

FRET Measurement—Cells were infected with adenoviruses
to express ICUE3 for 24 h. Cells were rinsed and maintained in
PBS with calcium for FRET recording. Cells were imaged on a
Zeiss Axiovert 200 M microscope with a �40/1.3 oil immersion
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objective lens and a charge-coupled device camera. Dual emis-
sion ratio imaging was acquired with a 420DF20 excitation fil-
ter, a 450DRLP diachronic mirror, and two emission filters
(475DF40 for cyan and 535DF25 for yellow). The acquisition
was set with a 200-ms exposure in both channels and 20-s
lapses. Images in both channels were subjected to background
subtraction, and ratios of yellow to cyan color were calculated at
different time points. The binding of cAMP to ICUE3 led to
decreases in the ratio of YFP to cyan fluorescent protein that
were plotted with an inverted y axis.

Drug Treatments—Cells were stimulated with isoproterenol
(ISO, Sigma) at the indicated times. Cells were treated with the
following inhibitors: the adrenergic antagonist alprenolol (ALP,
10 �M, Sigma), the selective AC inhibitor 2�,5� dideoxyadenos-
ine triphosphate, 100 �M, Sigma), and the PDE4 inhibitor rolip-
ram (ROL, A.G. Scientific) at the indicated times and doses.
Membrane-permeable tat-conjugated peptides containing
either the N-terminal-specific 30 amino acids of PDE4D8
(MAFVWDPLGVTVPGPSPR TRTRLRFSKSYS30) or the
N-terminal-specific 22 amino acids of PDE4D9 (MSIIMK-
PRSRSTSSLRTTEAVC22) were synthesized as described previ-
ously (17), and 1 �M peptide was added to cells 20 min before
stimulation with isoproterenol for the contraction rate assay.

Statistical Analysis—One-way and two-way ANOVA, fol-
lowed by post hoc Tukey’s test and Student’s t test, were per-
formed using Prism (GraphPad Software).

RESULTS

Recent studies indicate that PDE isoforms associate with
�ARs and other GPCRs and shape agonist-induced, dose-de-
pendent spatiotemporal response of cAMP in different cells (7,
18, 19). We hypothesize that stimulation of �AR promotes a
persistent intracellular signal that is masked by the receptor-
associated PDEs. We examined the effect of �AR stimulation
on contractile function of mouse hearts in vivo with a hemody-
namics study. Intraperitoneal injection of isoproterenol (0.2
mg/kg) induced a transient cardiac contractile response in
mouse hearts in vivo. Addition of rolipram after the transient
response recovered a much stronger, second contractility
response (Fig. 1A). We then used Langendorff-perfused hearts
to directly access �AR stimulation on contractile function in
mouse myocardium ex vivo. Perfusion of wild-type mouse
hearts with 1 nM of the �AR agonist isoproterenol induced
small and transient cardiac contractile response, including
increases in developing pressure, maximal dp/dt, and minimal
dp/dt (Fig. 1, B and D). Addition of PDE4 inhibitor rolipram at
20 min of isoproterenol perfusion induced a much stronger
second contractile response (Fig. 1, B and D). However, removal
of isoproterenol before addition of rolipram abolished the
rolipram-induced second response in cardiac contractility (Fig.
1, C and D). Biochemical assays confirmed that addition of
rolipram after isoproterenol stimulation induced a strong PKA
phosphorylation of phospholamban (PLB), a critical protein in
the regulation of calcium signaling for the cardiac contractile
response (Fig. 1E). However, this increase in PKA phosphoryl-
ation of PLB was absent in the hearts when isoproterenol was
washed away before the addition of rolipram (Fig. 1E).

Among cardiac �ARs, �1AR is the primary subtype respon-
sible for contractility. Therefore, we used primary cardiac myo-
cytes lacking the �2AR gene (�2AR-KO) to analyze the �1AR-
induced cAMP-PKA signal in the hearts. The cAMP FRET
biosensor ICUE3 (15) expressed in primary cardiac myocytes
displayed a transient response to stimulation with unsaturated
1 nM isoproterenol, which returned to the baselines in several
minutes (Fig. 2, A and B). However, pretreatment with the
PDE4 inhibitor rolipram promoted a higher and sustained
cAMP FRET response after stimulation with 1 nM isoproterenol
(Fig. 2A). These data support that �1ARs continuously signal to
AC to produce cAMP under persistent agonist stimulation.
However, the receptor-induced cAMP signal was masked by
PDE4-mediated cAMP hydrolysis. To test this idea, we applied
the PDE4 inhibitor rolipram after the transient cAMP FRET
response induced by 1 nM isoproterenol. The addition of rolip-
ram after the first transient peak recovered a second strong and
sustained cAMP FRET response in primary cardiac myocytes
(Fig. 2B). Meanwhile, we observed similar responses in primary
�2AR-KO prefrontal cortical neurons (Fig. 2C), suggesting a
conserved mechanism on persistent �1AR signaling in both
brain and heart tissues.

This rolipram-induced second cAMP signal was abolished by
either adding a competitive �AR antagonist, alprenolol, by
washing away isoproterenol with PBS (Fig. 2, D and E), or
by adding the AC inhibitor 2�, 5� dideoxyadenosine triphos-
phate before inhibition of PDE4 (Fig. 2F). In agreement, stimu-
lation of cardiac myocytes with 1 nM isoproterenol induced
small increases in the spontaneous contraction rate (Fig. 3, A
and B). Addition of the PDE4 inhibitor rolipram recovered
much higher and sustained second contraction rate responses
(Fig. 3A). However, the �AR antagonist alprenolol blocked the
rolipram-induced secondary increases in contraction rate (Fig.
3B). Moreover, the rolipram-induced second increases in
cAMP FRET and contraction rate were attenuated rapidly to
the baseline levels after addition of alprenolol (Fig. 3, C and D).
As a control, rolipram alone did not affect the cAMP FRET and
contraction rate at the baseline level (Fig. 3, E and F). Together,
these data suggest that �1ARs continuously signal through Gs
and AC for cAMP synthesis, which is also dependent on agonist
occupation of the receptors.

We hypothesized that �1AR forms a stable complex with
both the cAMP-stimulatory components Gs and AC and the
cAMP degradation component PDE to maintain long acting
receptor signaling under stimulation with 1 nM isoproterenol.
Among the PDE genes, PDE4D is implicated in association with
�ARs in cardiac myocytes (18). We successfully pulled down
PDE4D with endogenous �1AR together with the scaffold pro-
tein SAP97 and AKAP150 in mouse hearts (Fig. 4A). In addi-
tion, we pulled down the positive stimulatory components Gs
and PKA, the negative regulatory components PDE4D and
PP2A, as well as scaffold proteins SAP97 and AKAP150
together with FLAG-�1AR expressed in cardiac myocytes (Fig.
4B). This complex was stable under stimulation with 1 nM iso-
proterenol (Fig. 4B). This is in contrast to agonist-induced,
selective dissociation of PDE4 from the complex under stimu-
lation with a saturated concentration of 10 �M isoproterenol
(19, 20). Moreover, PDE4 was also phosphorylated by PKA
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under stimulation with 1 nM isoproterenol (Fig. 4C), which can
enhance enzymatic activity for cAMP degradation (21). Among
PDE4D isoforms, we identified that only the PDE4D8 isoform
displayed a significant association with �1AR in cardiac myo-
cytes (Fig. 4, D and E).

PDE4D isoforms differ at the N-terminal regions with spe-
cific sequences important for subcellular localization and func-
tion. The N-terminal regions can act as dominant negatives by
displacing the endogenous isoforms from the proper subcellu-
lar location (17). Overexpression of the N terminus of PDE4D8,
but not other PDE4D isoforms, in �2AR-KO myocytes
enhanced contraction rate response induced by 1 nM isoprot-
erenol (Fig. 4F). Introducing a single amino acid mutation in the
catalytic domains abolishes the enzymatic activity of the
PDE4D isoforms (22). Overexpression of catalytically inactive
PDE4D8-D498A, but not PDE4D9-D490A, enhanced the max-
imal cAMP FRET response induced by 1 nM isoproterenol in
�2AR-KO myocytes (Fig. 4, G and H). Consequently, overex-
pression of catalytically inactive PDE4D8-D498A enhanced the
myocyte contraction rate increases induced by 1 nM isoprotere-
nol, whereas wild-type PDE4D8 did not (Fig. 4I). Further anal-
ysis revealed that scaffold protein SAP97 is critical to connect
PDE4D8 to �1AR. Knockdown of SAP97 with shRNA disrupted

the association between �1AR and PDE4D8 (Fig. 5A) and
enhanced both the magnitude and duration of cAMP FRET
response in wild-type cardiac myocytes induced by 1 nM isopro-
terenol (Fig. 5B). These data indicate a critical role of PDE4D8
association with �1AR for tuning cAMP amplitude and dura-
tion after isoproterenol stimulation.

To assess the duration of the �1AR-induced cAMP signal, we
added rolipram at different durations after the first transient
cAMP FRET response induced by 1 nM isoproterenol in
�2AR-KO myocytes. Strikingly, the rolipram-induced second
cAMP FRET response was evident after 8 h of stimulation with
a decay t1⁄2 of 3.9 h (Fig. 6, A and C). In agreement, the addition
of rolipram induced secondary increases in the myocyte con-
traction rate with a decay t1⁄2 of 3.4 h (Fig. 6, B and D). Mean-
while, we also examined whether we could detect similar
response in wild-type myocytes. 1 nM isoproterenol induced a
transient response in cAMP FRET. The rolipram-induced sec-
ondary response in the cAMP FRET ratio were also observed in
wild-type cardiac myocytes (Fig. 7A). After 4 or 8 h of stimula-
tion with 1 nM isoproterenol, rolipram still induced significant
second response in cAMP FRET (Fig. 7, B–D). To determine
whether agonist occupation was necessary for the second
responses after extended periods of stimulation, we washed

FIGURE 1. Inhibition of PDE4 unveils the �AR-induced persistent signal for cardiac contractility in mouse hearts. A, hemodynamics were measured in
wild-type mouse hearts after intraperitoneal injection of the � adrenergic agonist isoproterenol (ISO, 0.2 mg/kg), followed by injection of rolipram (Rol, 3
mg/kg). Data show a representative curve of maximal dp/dt and minimal dp/dt. B–E, wild-type mouse hearts were used in Langendorff perfusion with
isoproterenol as indicated. Time courses of developing pressure, maximal dp/dt, and minimal dp/dt were recorded. B, hearts were perfused with 1 nM

isoproterenol (Iso) for 20 min, followed by addition of the PDE4 inhibitor rolipram (Roli, 10 nM). C, hearts were perfused with 1 nM isoproterenol for 10 min,
followed by perfusion with saline to wash away the agonist for 10 min before addition of the PDE4 inhibitor rolipram (10 nM). D, the peak changes in developing
pressure, maximal (Max) dp/dt, and minimal (Min) dp/dt from different time points in A and B. E, heart tissues were lysed, and the PKA phosphorylation of PLB
at serine 16 and calmodulin-dependent kinase II phosphorylation at threonine 17 were examined by Western blot analyses and normalized against the levels
of total PLB. Con, control. *, p � 0.05; **, p � 0.01; ***, p � 0.005 between the indicated groups by one-way ANOVA.
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FIGURE 2. PDE4 masks the cAMP signal induced by �1AR in primary cardiac myocytes and prefrontal cortical neurons under stimulation with isopro-
terenol. Cardiac myocytes or prefrontal cortical neurons from �2AR-KO mice expressing the cAMP biosensor ICUE3 were stimulated with isoproterenol as
indicated. A, cells were stimulated with 1 nM isoproterenol (ISO) in the absence or presence of pretreatment with the PDE4 inhibitor rolipram (Rol, 10 �M). CFP,
cyan fluorescent protein. Cardiac myocytes (B) and prefrontal cortical neurons (C) were stimulated with 1 nM isoproterenol. After the transient initial increase
in FRET ratio, cells were treated with and without the PDE4 inhibitor rolipram (10 �M). D–F, cardiac myocytes were stimulated with 1 nM isoproterenol. After the
transient initial increase in FRET ratio, cells were treated with addition of the �AR antagonist alprenolol (ALP, 10 �M) (D), washing with PBS to remove the agonist
(E), or with addition of the AC inhibitor 2�,5� dideoxyadenosine triphosphate (2�,5�DDA, 100 �M) (F) before addition of the PDE4 inhibitor rolipram (10 �M). The
changes in FRET ratio were recorded.
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cells with PBS to remove the agonist 30 min prior to the admin-
istration of rolipram. Washing away the agonist with PBS abol-
ished the rolipram-induced second response in cAMP FRET.
However, additional direct stimulation of AC with forskolin
induced a strong response in the cAMP FRET ratio, suggesting
that AC was still active in these cells (Fig. 7, B and C). In con-
trast, washing cells with PBS containing 1 nM isoproterenol did
not affect the rolipram-induced second responses in cAMP
FRET when compared with those without washing (Fig. 7,
B–D). In agreement, rolipram induced significant increases in
the contraction rate after 4 and 8 h of stimulation with 1 nM

isoproterenol (Fig. 7E). These increases were abolished by
washing with PBS 30 min before the addition of rolipram but
not affected by washing with PBS containing 1 nM isoprotere-
nol. Together, these data suggest that the �AR-induced cAMP
signal is constantly masked by receptor-associated PDE4 for
extended periods and that only inhibition of the enzyme is able
to reveal the cAMP signal and contractile response in cardiac
myocytes.

To further illustrate the long action of �1AR in cardiac myo-
cytes, we introduced a mutation to the �1AR C-terminal PDZ
motif that selectively disrupted the receptor binding to SAP97

and PDE4D8 but did not affect the receptor association with Gs
(Fig. 8A). When introduced into �1AR-KO cardiac myocytes,
the mutant �1AR induced much stronger and sustained cAMP
FRET responses than the wild-type receptor (Fig. 8B) and pro-
moted sustained increases in contraction rate during 8-hour
stimulation (Fig. 8C). In contrast, wild-type �1AR induced tran-
sient increases in contraction rate that returned to baseline
level. Accordingly, stimulation of wild-type �1AR induced tran-
sient PKA phosphorylation of PLB in cardiac myocytes,
whereas the mutant �1AR promoted stronger and sustained
PKA phosphorylation of PLB during 4-h stimulation (Fig. 8, D
and E).

DISCUSSION

Small-molecule, ligand-induced GPCR activation is thought
to be transient because of receptor phosphorylation and inter-
nalization and because of receptor dissociation from the ago-
nist. However, this notion remains at odds with many GPCR-
dependent, long lasting cellular and physiological response in
vitro and in vivo. Here we found that ligand-occupied �1ARs
continuously stimulated AC to produce cAMP in primary
cardiac myocytes and prefrontal cortical neurons (Fig. 2, B
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FIGURE 3. Activation of �1AR induces sustained contraction rate response under stimulation with 1 nM isoproterenol. A, in �2AR-KO myocytes, stimu-
lation of �1AR with 1 nM isoproterenol (ISO) induced a small and transient contraction rate response. The addition of rolipram (ROL) promoted a higher and
sustained contraction rate response. B, addition of the �AR antagonist alprenolol (ALP) before rolipram attenuated the myocyte contraction rate induced by 1
nM isoproterenol and completely abolished the higher contraction rate response promoted by rolipram. C and D, addition of �AR antagonist alprenolol after
rolipram reversed the second cAMP FRET and myocyte contraction rate responses back to the baseline levels. CFP, cyan fluorescent protein. E and F, rolipram
did not significantly affect the baseline cAMP FRET ratio and myocyte contraction rate.
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and C). However, this signal was suppressed by the receptor-
associated PDE4D8 and could be revealed by inhibition of
PDE4 activity (Fig. 2, B and C). Therefore, in this signaling
paradigm, equilibrium is maintained between agonist-de-
pendent continuous stimulation of AC for cAMP production

and PDE-mediated cAMP degradation. This agonist-depen-
dent equilibrium lasts for more than 8 h (a decay t1⁄2 of 3.9 h,
Fig. 6), challenging the classic dogma of rapid receptor
desensitization occuring within several minutes of agonist
stimulation.
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In a classic paradigm, stimulation of �AR promotes receptor
phosphorylation by G protein-coupled receptor kinases in an
agonist dose-dependent fashion, which leads to receptor desen-
sitization and internalization to terminate receptor signaling.
This paradigm was challenged by recent studies showing that,
under saturated agonist stimulation, �2AR is capable of main-
taining an agonist-induced active conformation after internal-
ization and/or recycling (12), which is thought to allow the
receptor to send a second wave of signals into cells (23). In
comparison with �2AR, �1AR displays minimal internalization

in cardiac myocytes because of its low-affinity binding to arres-
tin and its tethering to scaffold proteins (e.g. SAP97) at the
sarcolemma (11, 24). Even after internalization, SAP97 works
together with AKAP150/79 to facilitate �1AR recycling to the
cell surface by PKA-mediated phosphorylation of the receptor
at serine 312 (25–27). Together, the processes enable �1ARs to
access available agonists at the extracellular space and signal to
G protein. Still, one must assume that either in the media, iso-
proterenol is more stable than measured previously or that the
complex can continue to signal in the absence of ligand but
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clearly not with binding of antagonist. The mechanism under-
lying the observed long-lasting signaling of �1AR under stimu-
lation with 1 nM isoproterenol is unclear at this point.

Interestingly, this persistent �1AR signal is not evident
because of an effective culling of cAMP by the receptor-associ-
ated PDE4D8, which is phosphorylated and activated by PKA
and serves as a negative mechanism to keep cAMP levels in
check. However, despite the transient cAMP detected by the
FRET-based biosensor in living cells, the physiological
responses are maintained for long periods of time. This appar-
ent difference is not yet well understood and could be, in part,
due to the limited sensitivity of the ICUE3 biosensor (28)
and/or the low amount of cAMP in local compartments. We
speculate that the initial cAMP spike promotes binding to PKA,
which could have a much more stable interaction than appre-
ciated previously (29, 30), and sustained PKA activation to
maintain long term physiological response. Alternatively,
cAMP produced by AC could supply enough nucleotides to
maintain the equilibrium of the binding between cAMP and
PKA within local complexes for extended periods. Meanwhile,
the increased PDE4D8 activity under PKA phosphorylation
could ensure limited or no cAMP to escape from the com-
plexes. The mechanism of whether and how PDE prevents
cAMP diffusion is still poorly understood. In one hypothetical
scenario, an agonist-activated receptor complex could undergo
rearrangement to allow PDE4D8 positioning right toward the
catalytic domain of AC to degrade the newly synthesized cAMP

and effectively prevent cAMP escaping from the complex.
Physiologically, the PDE4D8-maintained local cAMP/PKA
activities could lead to activation of hyperpolarization-acti-
vated cyclic nucleotide-gated channels (31, 32) and L-type cal-
cium channel (33) within local compartments. Activation of
hyperpolarization-activated cyclic nucleotide-gated ion chan-
nel is essential for heart rate regulation, whereas activation of
L-type calcium channel can promote calcium transient and
excitation-contraction coupling in ventricular myocytes to
enhance contractility.

The PDE4D8-�1AR complex is organized by scaffold protein
SAP97. SAP97 displays an agonist-induced and G protein-cou-
pled receptor kinase-mediated dissociation from �1AR (24).
Consequently, PDE4D8 also displays agonist dose-dependent
dissociation from �1AR. However, the cAMP-producing
enzyme AC does not dissociate from the receptor (19, 20).
Therefore, under increasing doses of agonist, the AC-mediated
cAMP production is uncoupled from the PDE4D-mediated
cAMP degradation in an agonist dose-dependent fashion that
allows cAMP equilibrium to shift to higher levels over the base-
lines (20). As a result, at the minimal concentration of agonist,
cAMP detected by the biosensor ICUE3 displays a transient
spike after stimulation. Only after a higher concentration of
agonist stimulation, PDE dissociates from the receptor com-
plex, permitting cAMP diffusion in the cytoplasm, which dis-
plays a sustained increase detected by the biosensor ICUE3
(20). When the PDE activity is inhibited by pharmacological
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inhibitor(s) or by disrupting the association with �1AR, the
receptor is able to promote a persistent cAMP signal in cardiac
myocytes and prefrontal cortical neurons. Together, our data
reveal a persistent �1AR signal in physiologically relevant myo-
cytes and neurons and an underappreciated role of receptor-
associated PDE in maintaining the cAMP equilibrium under
prolonged agonist stimulation. These results also argue that the
PDE-mediated degradation of the second messenger plays an
essential role in classic receptor signaling desensitization.
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